Kamis, 26 April 2012

MAKALAH “Tata Surya dan Benda Langit Yang Terikat Dengan Gravitasi”

KATA PENGANTAR

Puji syukur senantiasa saya ucapkan ke hadirat Tuhan Yang Maha Kuasa karena atas  segala rahmat, petunjuk, dan karunia-Nya sehingga saya dapat menyelesaikan makalah ini untuk memenuhi tugas Bahasa Indonesia Keilmuan. Makalah ini dapat digunakan sebagai wahan untuk menambah pengetahuan, sebagai teman belajar, dan sebagai referensi tambahan dalam belajar Tata Surya. Makalah ini dibuat sedemikian rupa agar pembaca dapat dengan mudah mempelajari dan memahami Tata Surya  secara lebih lanjut. Makalah ini juga dilengkapi dengan gambar-gambar sehingga pembaca tidak bosan.
Ucapan terima kasih saya ucapkan kepada semua pihak yang namanya tidak bisa saya sebutkan satu per satu yang telah membantu dalam mempersiapkan, melaksanakan, dan menyelesaikan penulisan makalah ini. Segala upaya telah dilakukan untuk menyempurnakan makalah ini, namun tidak mustahil apabila dalam makalah ini masih terdapat kekurangan dan kesalahan. Oleh karena itu, saya mengharapkan kritik dan saran yang dapat dijadikan masukan dalam menyempurnaan makalah selanjutnya.
Semoga makalah ini dapat bermanfaat bagi pembaca untuk menambah pengetahuan dan wawasan tentang Tata Surya. Jangan segan bertanya jika pembaca menemui kesulitan. Semoga keberhasilan selalu berpihak pada kita semua.
Malang, 6 Januari 2010
Penulis
DAFTAR ISI

KATA PENGANTAR ………………………………………………………………..      i
DAFTAR ISI ……………………………………………………………………………………..      ii
DAFTAR GAMBAR ………………………………………………………………………….      iv
BAB I PENDAHULUAN …………………………………………………………………..       1
1.1 Latar Belakang …………………………………………………………………..      1
1.2 Rumusan Masalah ………………………………………………………………      2
1.3 Tujuan Penulisan ………………………………………………………………..      2
BAB II PEMBAHASAN …………………………………………………………………….      3
2.1 Asal-usul Tata Surya ……………………………………………     3
2.2 Sejarah Penemuan Tata Surya …………………………………..     5
2.3 Struktur Tata Surya ……………………………………………..      7
2.3.1 Terminologi ……………………………………………..      9
2.3.2 Zona Tata Surya ……………………………………….     10
2.3.3 Matahari ……………………………………………….    11
2.3.4 Tata Surya Bagian Dalam ……………………………..    14
2.3.4.1 Planet-planet Bagian Dalam …………………    14
2.3.4.1.1 Merkurius ………………………….    15
2.3.4.1.2 Venus ………………………………     15
2.3.4.1.3 Bumi ………………………………     16
2.3.4.1.4 Mars ……………………………….     16
2.3.4.2 Sabuk Asteroid ………………………………    17
2.3.5 Tata Surya Bagian Luar ……………………………….     18
2.3.5.1 Planet-planet Bagian Luar …………………..     18
2.3.5.1.1 Yupiter …………………………….     19
2.3.5.1.2 Saturnus ……………………………    19
2.3.5.1.3 Uranus ……………………………..    19
2.3.5.1.4 Neptunus …………………………..     20
2.3.5.1.4 Neptunus ……………………………….     19
2.3.5.2 Komet ……………………………………….     20
2.3.6 Daerah trans-Neptunus ……………………………….      21
2.3.6.1 Sabuk Kuiper ………………………………..     22
2.3.6.2 Piringan Tersebar …………………………..      22
2.3.7 Daerah Terjauh ………………………………………..     23
2.4 Konteks Galaksi ………………………………………………..      23
BAB III PENUTUP …………………………………………………………    26
3.1 Kesimpulan …………………………………………………….      26
3.2 Saran ……………………………………………………………     27
DAFTAR RUJUKAN ………………………………………………………     28











BAB I
PENDAHULUAN
1.1 Latar Belakang
Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet luar, dan di bagian terluar adalah Sabuk Kuiper dan Piringan Terbesar. Enam dari delapan planet dan tiga dari lima planet kerdil itu dikelilingi oleh satelit alami yang biasa disebut dengan bulan. Contoh: Bulan atau satelit alami Bumi. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.
Itulah sedikit gambaran tentang Tata Surya. Tetapi, Bagaimana Tata Surya bisa berbentuk seperti sekarang? Bagaimana awal mula terbentuknya Tata Surya? Apa yang menarik tentang Tata Surya? Pertanyaan-pertanyaan ini sering muncul di sekitar kita dan saya akan mencoba menjawab lewat makalah ini. Oleh karena itu, pada kesempatan kali ini penulis membuat makalah yang berjudul “Tata Surya dan Semua Benda Langit yang Terikat dengan Gravitasi” dengan harapan dapat membantu para pembaca.. Dengan adanya makalah ini bukan berarti benda langit hanya itu saja tetapi masih ada banyak lagi yang tidak dapat ditangkap oleh indera manusia sehingga kita harus banyak belajar agar dapat menemukan benda langit yang baru.
1.2 Rumusan Masalah
Berdasarkan Latar Belakang Masalah yang telah dijelaskan, maka secara garis besar ada empat rumusan masalah sebagai berikut.
  • Bagaimana Asal-usul Tata Surya?
  • Bagaimana Sejarah Penemuan Tata Surya?
  • Bagaimana Struktur Tata Surya?
  • Bagaimana Konteks Galaksi Tata Surya?
1.2 Tujuan Penulisan
Adapun tujuan penulisan makalah ini adalah sebagai berikut.
  • Mengetahui Asal-usul Tata surya.
  • Mengetahui Sejarah Tata Surya.
  • Mengetahui Struktur Tata Surya.
  • Mengetahui Konteks Galaksi Tata Surya.
BAB II
PEMBAHASAN
2.1 Asal-usul Tata Surya
Banyak ahli telah mengemukakan hipotesis tentang asal-usul Tata Surya, diantaranya.
  • Hipotesis Nebula
Hipotesis Nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772) tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace secara independen pada tahun 1796. Hipotesis ini lebih dikenal dengan Hipotesis Nebula Kant-Laplace yang menyebutkan bahwa pada tahap awal Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut, berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi tersebut gas-gas memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar.
  • Hipotesis Planetisimal
Hipotesis Planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan matahari. Pada masa awal pembentukan matahari, kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. Sementara sebagian besar materi tertarik kembali dan sebagian lain akan tetap di orbit, mendingin, memadat, dan menjadi benda-benda berukuran kecil yang disebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu sehingga membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
  • Hipotesis Pasang Surut Bintang
Hipotesis Pasang Surut Bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada matahari.  Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain oleh gaya pasang surut yang kemudian terkondensasi menjadi planet. Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi. Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.
  • Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. uiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
  • Hipotesis Bintang Kembar
Hipotesis Bintang Kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis Bintang Kembar menjelaskan bahwa Tata Surya berupa dua bintang yang hampir sama ukurannya dan saling  berdekatan. Kemudian salah satunya meledak dan meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.
2.2 Sejarah Penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter, dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia “lebih tajam” dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang. Karena teleskop Galileo bisa mengamati lebih tajam sehingga ia bisa melihat berbagai perubahan bentuk penampakan Venus seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris yaitu bahwa matahari adalah pusat alam semesta. Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter. Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
William Herschel (1738-1822) menemukan Uranus pada 1781. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Kemudian Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930. Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978 ditemukan satelit yang mengelilingi Pluto yaitu Charon yang sebelumnya sempat dikira sebagai planet karena ukurannya tidak jauh berbeda dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil yang letaknya melampaui Neptunus (disebut objek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004). Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.
2.3 Struktur Tata Surya
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya. Yupiter dan Saturnus merupakan  dua komponen terbesar yang mengedari matahari menyangkup kira-kira 90 persen massa selebihnya. Hampir semua objek-objek besar yang mengorbit matahari terletak pada bidang edar bumi yang disebut ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika. Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi matahari dengan berlawanan arah jarum jam jika dilihat dari atas kutub utara matahari kecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari matahari memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan matahari disebut perihelion, sedangkan jarak terjauh dari matahari disebut aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet hampir berbentuk lingkaran sedangkan komet, asteroid, dan objek sabuk Kuiper orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak yang sama antar orbit. Semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara objek itu dengan jalur edar orbit sebelumnya. Sebagai contoh: Venus terletak sekitar sekitar 0,33 SA dari Merkurius, Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya memiliki sistem sekunder yang kebanyakan adalah benda pengorbit alami (satelit atau bulan). Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memiliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.
2.3.1 Terminologi
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Tata Surya bagian luar terdapat empat gas planet raksasa. Sejak ditemukan Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah tersendiri yang meliputi semua objek melampaui Neptunus.
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan, yaitu: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Menurut definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper. Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari dan mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya. Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil, yaitu: Ceres, Pluto, Haumea, Makemake, dan Eris. Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus disebut plutoid.
Sisa objek-objek lain yang mengitari matahari adalah benda kecil Tata Surya. Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menyebut bahan bertitik lebur tinggi (lebih besar dari 500 K). Contoh: silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam yang merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom,  hidrogen, helium, dan gas mulia. Bahan-bahan ini mendominasi wilayah tengah Tata Surya yang didominasi oleh Yupiter dan Saturnus. Es seperti air, metana, amonia, dan karbon dioksida memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (es raksasa) serta berbagai benda kecil yang terletak di dekat orbit Neptunus.
2.3.2 Zona Tata Surya

Gambar 2.1   Zona Tata Surya
Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper.
Di zona planet bagian dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Sabuk asteroid adalah kumpulan batuan metal dan mineral yang terletak di antara Mars dan Yupiter.. Kebanyakan asteroid-asteroid ini hanya berdiameter sekitar100 km atau lebih. Orbit asteroid-asteroid ini sangat eliptis, bahkan sampai menyimpang Merkurius (Icarus) dan Uranus (Chiron). Ceres adalah bagian dari kumpulan asteroid ini yang berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil.
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3. Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya pada planet Neptunus tidak muncul di baris matematis Titus-Bode sehingga membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.
2.3.3 Matahari


Gambar 2.2   Matahari di lihat dari Spektrum Sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya.Bintang ini berukuran 332.830 kali dari massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik yang termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning yang berukuran tengahan.  Nama ini menyebabkan kesalahpahaman karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama dan matahari terletak persis di tengah deret ini. Akan tetapi bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.
Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang. Matahari secara metalisitas dikategorikan sebagai bintang “populasi I”. Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta sehingga mengandung banyak unsur yang lebih berat daripada hidrogen dan helium (metal) dibandingkan dengan bintang “populasi II”. Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini. Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.
Gambar 2.3   Lembar Aliran Heliosfer
Disamping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam sehingga menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya sejauh 100 SA. Kesemuanya ini disebut medium antarplanet.
Badai geomagnetis pada permukaan matahari, seperti semburan matahari (solar flares) dan pengeluaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer sehingga menciptakan cuaca ruang angkasa. Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), yaitu sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet. Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet karena atmosfernya habis terkikis ke luar angkasa. Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi meskipun tidak diketahui seberapa besar.
Medium antarplanet juga merupakan tempat berada dua daerah mirip piringan yang berisi debu kosmis. Daerah pertama, awan debu zodiak yang terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet. Daerah kedua, membentang antara 10 SA sampai sekitar 40 SA dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.
2.3.4 Tata Surya Bagian Dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama yang terbuat dari silikat dan logam. Objek dari Tata Surya bagian dalam melingkup dekat dengan matahari. Radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
2.3.4.1 Planet-Planet Bagian Dalam


Gambar 2.4   Planet-Planet Bagian Dalam
Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars.  Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat dan hampir tidak mempunyai bulan dan sistem cincin. Komposisi utama planet ini adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung dan logam seperti besi dan nikel yang membentuk intinya. Venus, Bumi dan Mars memiliki atmosfer, kawah meteor, dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
2.3.4.1.1 Merkurius
Merkurius (0,4 SA) adalah planet terdekat dari matahari serta terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya. Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin matahari. Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesis lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa dan perkembangan (akresi) penuhnya terhambat oleh energi awal matahari.
2.3.4.1.2 Venus
Venus (0,7 SA) berukuran 0,815 kali dari massa bumi. Planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfer yang tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C yang kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer. Sejauh ini aktivitas geologis Venus belum dideteksi dan karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer diduga sumber atmosfer Venus berasal dari gunung berapi.
2.3.4.1.3 Bumi
Bumi adalah planet bagian dalam yang terbesar dan terpadat. Bumi adalah satu-satunya yang diketahui memiliki aktivitas geologi dan memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diobservasi memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen. Bumi memiliki satu satelit yaitu bulan dan satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
2.3.4.1.4 Mars
Mars (1,5 SA) berukuran lebih keci dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris menunjukan aktivitas geologis yang terus terjadi sampai belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi. Mars mempunyai dua satelit alami kecil yaitu Deimos dan Phobos yang diduga merupakan asteroid yang terjebak gravitasi Mars.
2.3.4.2 Sabuk Asteroid


Gambar 2.5   Sabuk Asteroid Utama
Asteroid adalah obyek Tata Surya yang terdiri dari batuan dan mineral logam beku. Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter yang berjarak antara 2,3-3,3 SA dari matahari. Asteroid merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter. Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik. Sabuk asteroid terdiri dari beribu-ribu hingga jutaan objek yang berdiameter satu kilometer. Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi. Sabuk utama tidaklah rapat karena kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10-4 m disebut meteorid.
2.3.5 Tata Surya Bagian Luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelit yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur yang juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut es dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.
2.3.5.1 Planet-Planet Bagian Luar
Keempat planet luar yang disebut planet raksasa gas (gas giant) atau planet jovian secara keseluruhan mencakup 99% massa yang mengorbit matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium. Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es. Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.

Gambar 2.6   Raksasa-raksasa gas dalam Tata Surya dan Matahari
2.3.5.1.1 Yupiter

Yupiter (5,2 SA) merupakan planet yang berukuran 318 kali massa bumi dan 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utama planet ini adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya seperti pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar adalah Ganymede, Callisto, Io, dan Europa yang menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas. Ganymede, yang merupakan satelit terbesar di Tata Surya berukuran lebih besar dari Merkurius.
2.3.5.1.2 Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya memiliki beberapa kesamaan dengan Yupiter yaitu komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, namun  planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi sehingga membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini dan 3 yang belum dipastikan. Dua di antaranya  yaitu Titan dan Enceladus yang  menunjukan activitas geologis meskipun hanya terdiri dari es saja. Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
2.3.5.1.3 Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan berukuran poros 90° pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas. Uranus memiliki 27 satelit yang diketahui dan yang terbesar adalah Titania, Oberon, Umbriel, Ariel, dan Miranda.
2.3.5.1.4 Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus namun memiliki 17 kali massa bumi sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus. Neptunus memiliki 13 satelit yang diketahui. Yang terbesar adalah Triton. Triton memiliki geyser nitrogen cair dan geologinya aktif. Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
2.3.5.2 Komet
Gambar 2.7   Komet Halley-Bopp
Komet adalah badan Tata Surya kecil yang biasanya hanya berukuran beberapa kilometer dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi. Secara umum, perihelionnya terletak di planet-planet bagian dalam dan letak aphelionnya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam dan mendekati  matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi yang menghasilkan koma, ekor gas, dan debu panjang yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers terbentuk dari pecahan sebuah induk tunggal. Sebagian komet berorbit hiperbolik mungkin berasal dari luar Tata Surya tetapi menentukan jalur orbitnya secara pasti sangatlah sulit. Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.
2.3.6 Daerah trans-Neptunus
Daerah yang terletak jauh melampaui Neptunus disebut daerah trans-Neptunus yang sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
2.3.6.1 Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA dan terdiri dari benda kecil Tata Surya. Beberapa objek Kuiper yang terbesar seperti Quaoar, Varuna, dan Orcus mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi. Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi resonansi dan sabuk klasik. Resonansi adalah orbit yang terkait pada Neptunus. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus dan terletak sekitar 39,4 SA- 47,7 SA. Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos.

2.3.6.2 Piringan Tersebar
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai “Objek Sabuk Kuiper Tersebar”.
2.3.7 Daerah Terjauh
Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah yaitu angin matahari dan gravitasi matahari. Batasan terjauh pengaruh angin matahari kira kira berjarak empat kali jarak Pluto dan matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi, Bola Roche Matahari jarak efektif pengaruh gravitasi matahari diperkirakan mencakup sekitar seribu kali lebih jauh.
Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain tidak lebih besar dari 50.000 SA sekalipun Sedna telah ditemukan. Daerah antara Sabuk Kuiper dan Awan Oort adalah sebuah daerah yang memiliki radius puluhan ribu SA. Selain itu, juga ada studi yang mempelajari daerah antara Merkurius dan Matahari. Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.
2.4 Konteks Galaksi
Tata Surya terletak di galaksi Bima Sakti yaitu sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang. Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion. Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik. Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.
Gambar 2.8   Lokasi Tata Surya di dalam galaksi Bima Sakti
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi sehingga bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.
Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi. Intensitas radiasi dari pusat galaksi juga mempengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesis bahwa pada lokasi Tata Surya sekarang ini supernova telah mempengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet.


BAB III
PENUTUP
3.2 Kesimpulan
Ada beberapa hipotesis yang menyatakan asal-usul Tata Surya yang telah dikemukakan oleh beberapa ahli, yaitu Hipotesis Nebula, Hipotesis Planetisimal, Hipotesis Pasang Surut Bintang, Hipotesis Kondensasi, dan Hipotesis Bintang Kembar. Sejarah penemuan Tata surya di awali dengan dilihatnya planet-planet dengan mata telanjang hingga ditemukannya alat untuk mengamati benda langit lebih jelas yaitu Teleskop dari Galileo. Perkembangan teleskop diimbangi dengan perkembangan perhitungan benda-benda langit dan hubungan satu dengan yang lainnya. Dari mulai mengetahui perkembangan planet-planet hingga puncaknya adalah penemuan UB 313 yang ternyata juga mempunyai satelit.
Tata surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil atau katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya. Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar ada Sabuk Kuiper dan Piringan Tersebar.
3.2 Saran
Sebaiknya semua pihak mempelajari Tata Surya agar dapat mengetahui dari mana sebenarnya Tata Surya itu berasal sehingga kita tidak dapat mengada-ada atau merekayasanya. Mengetahui Tata Surya juga sangat penting agar kita dapat mengetahui kebesaran Tuhan Yang Maha Esa sehingga kita dapat meningkatkan keimanan dan ketakwaan.


DAFTAR RUJUKAN
Amalia, Lily. 2004. Fisika 1 Kelas X. Bandung: PT. Rosdakarya.
Barata, Bima. 2002. Fisika Untuk SMA. Jakarta: Sagufindo Kinarya.
Saukah, Ali, dkk. 2007. Pedoman Penulisan Karya Ilmiah. Malang: UM Press.
Widyartono, Didin. 2008. Kaidah-Kaidah Menulis. Malang: Indus Nesus Private.
Wikipedia.2009.Tata Surya,(Online),(http://wikipediafoundation.org/,diakses 23 November 2009).
Wikipedia.2009.Planet,(Online),(http://wikipedia.org/wiki/Planet,diakses 23 November 2009).
Wikipedia.2009.Bulan,(Online),(http://id.wikipedia.org/Bulan_%28satelit%29,diakses 23 November 2009).

penyebab nyeri sendi

Ada banyak sekali sebab mengapa persendian sakit. Nyeri sendi dapat merupakan gejala tunggal atau menjadi bagian banyak gejala lain yang Anda alami. Manifestasi nyeri sendi dapat bervariasi, seperti kelembutan atau tidak nyaman ketika disentuh, pembengkakan, peradangan, kekakuan, atau pembatasan gerakan. Rasa sakit di sendi tentu saja hanyalah gejala dari masalah yang sebenarnya. Bila ada gejala lain seperti sakit kepala berat, sakit perut, demam, atau menggigil, Anda perlu melihat semua gejala untuk mengetahui penyebabnya.  Berikut adalah 5 penyebab umum sakit persendian yang tidak disebabkan oleh cedera:

1. Penyakit rematik (rheumatoid arthritis)

Rematik adalah penyebab paling umum nyeri sendi kronis. Berlawanan dengan pendapat umum, rematik bukanlah penyakit khas usia tua. Orang muda juga dapat terkena rematik. Rheumatoid arthritis disebabkan oleh kerusakan sistem autoimun sehingga tubuh menghasilkan zat yang menyebabkan peradangan, terutama pada sendi. Bagian tubuh favorit yang diserang adalah sendi jari tangan dan kaki dan tulang belakang. Serangan rematik membuat peradangan dan pembengkakan selaput sendi dan secara bertahap menghancurkan kapsul sendi, dan kemudian tendon. Konsekuensi pada akhirnya adalah deformasi tulang dan pembatasan gerakan.

2. Osteoartritis

Osteoartritis adalah penyakit sendi degeneratif (umumnya menyerang mereka yang berusia di atas 45 tahun). Pada osteoarthritis, sendi mengalami nyeri namun tidak diawali dengan peradangan. Rasa nyeri biasanya terasa bila mengangkat beban dan pada awal gerakan dari posisi istirahat. Penyebabnya karena penuaan dan penggunaan terus-menerus.  Tulang rawan yang menutupi tulang artikular menjadi aus oleh gesekan secara bertahap. Risiko terutama pada pinggul, lutut, tangan, kaki, dan tulang belakang.

3. Ankylosing spondylitis

Ankylosing spondylitis adalah salah satu bentuk artritis lainnya. Kondisi ini terutama menyebabkan nyeri dan peradangan sendi tulang belakang dan panggul, walaupun sendi lainnya dapat terlibat juga. Gejala dirasakan selama waktu tidur, setelah bangun tidur atau setelah interval tidak aktif. Pada kasus yang parah, ankylosing spondylitis dapat menyebabkan fusi tulang belakang sehingga menyebabkan membungkuk, yang dikenal sebagai kyphosis. Keparahan bervariasi dan tidak semua penderita mengalami fusi tulang belakang. Beberapa mungkin hanya mengalami sakit punggung atau pinggul secara sporadis. Seperti halnya rematik, ankylosing spondylitis adalah penyakit autoimun yang menurun.

4. Psoriatik Artritis

Arthritis ini adalah efek samping dari psoriasis. Pembengkakan menyakitkan dapat terjadi pada semua sendi, terutama ruas jari, pergelangan tangan, lutut, tulang selangka, pergelangan kaki dan punggung bawah. Gejala biasanya disertai masalah kulit. Sekitar 30-40% orang dengan gejala psoriasis mengembangkan psoriatik artritis, meskipun sering kali tidak terdiagnosis, terutama jika gejalanya ringan. Psoriatik artritis biasanya terjadi antara usia 30-50 tahun, namun bisa muncul pada usia berapa pun dan memengaruhi baik pria maupun wanita.

5. Gout (asam urat)

Jika rasa sakit tajam berada di sekitar ruas dan pergelangan kaki, penyebabnya mungkin adalah gout. Gout adalah hasil kadar asam urat yang tinggi dalam darah. Rasa sakit sendi disertai bengkak, kemerahan, dan hangat.
Selain kelima kondisi di atas, penyakit lupus dan penyakit infeksi seperti demam rematik, gondongan, cacar air, hepatitis, dan influenza juga dapat menyebabkan nyeri persendian.

Senin, 23 April 2012

Kode Keyborad Komputer/Laptop

sering kali kan kita mengetiki bahkan kemajuan jaman sekarang pasti sedikit-sedikit kita mengetik didalm pembuatan tugas, surat lamaran,proposal dan lain sebagainya, nah untuk memudahkan anda mengetik maka saya akan memberikan sedikit trik untuk mempelajari kode kibord didalam mengetik di microscoft word, dengan cara anda memainkan dan mengedit kata menggunakan kode kibord anda akan lebih terlihat profesional cara ini juga sangat berfungsi bagi anda yang ingin belajar mengetik di microscoft word menggunakana kode kibord nah langsung aja nie ya gak usah panjang-panjang critanya .
nie caranya :

untuk menjalankan kode kiboard dibawah ini anda harus memblog sebuah kata baru anda terapkan kode kiboard dibawah ini
kode kibord didalam pengetikan
  • CTRL + B : untuk menebalkan huruf
  • CTRL + i : untuk memiringkan hufuf
  • CTRL + U : untuk menggaris bawahi kata
  • CTRL + P : untuk mengeprint
  • CTRL + L : membuat kalimat menjadi rata kiri
  • CTRL + J : membuat kalimat menjadi rata kanan kiri
  • CTRL +E : membuat kalimat menjadi rata tengah
  • CTRL +R : membuat kalimat menjadi rata kanan
  • CTRL +S : menyimpan dokument
  • CTRL +N : membuka jendela microscoft word baru
  • CTRL +M : fasilitas tab
  • CTRL +W : untuk klose jendela microscoft word
  • CTRL + Z : untuk mengembalikan kesalahan
  • CTRL +Y : untuk fasilitas redo ( kebalikan dari CTRL +Z
  • CTRL +C : untuk mencopi kalimat
  • CTRL +V : untuk mempaste
  • CTRL +X : untuk memotong kalimat
  • CTRL +} : untuk membesarkn seiz huruf
  • CTRL +{ : untuk mengecilkan seiz huruf
  • CTRL +O : untuk open file baru
  • CTRL +2 : untuk spasi 2,00 cm
  • CTRL + 5 : untuk spasi 1,5 cm
  • CTRL +1 : untuk spasi 1,00 cm
  • CTRL +D : untuk mengatur font ( warna kalimat)
  • CTRL +A : untuk mengeblok semua documet
  • shift + F3 : untuk membuat huruf kapital dan huruf kecil
  • shift + end : untuk mengeblok dari kiri kekanan
  • shift + home : untuk mengeblok dari kanan kekiri
  • CTRL +shift + = : untuk menulis huruf berpangkat
  • shift F12 : untuk menu save as
  • menu tab : untuk mengatur jarak ( pargaraf ) agar sesuai
  • caps lock : menulis dengan huruf kapital
  • shift : menulis huruf kapita satukali
  • home : mengarahkan pointer diujung kiri
  • end : mengarahkan komputer diujung kanan
  • page Up : mengarahkan pointer di halaman paling atas
  • page down : mengarahkan komputer dibagian paling bawah halaman
semoga bermanfaat terimakasih jangan lupa dinilai ya . . . . . . . .artikelnya

Bro Tanks Atas Kunjungannya And Jangan Lupa Bro Kritik And Saran Yach

Cara Membuat Kabel USB Exterder

nah apakah anda mempunyai kendala terhadap kabel USB anda anda jika anda mempunyai kendala terhadap kabel USB anda misalnya seperti kependekan gitu cara membuat memperpanjangnya sebenarnya cukup mudah kok, dari pada kita harus menghabiskan uang untuk membuatnya lebih baik kita buat sendiri ajakan lebih bagus, nah jika anda tertarik ingin membuatnya silahkan ikuti postingan berikut ini untuk lebih jelasnya, dan juga terimakasih telah berkunjung jangan lupa berikan sedikit nilainya ya agar lebih semgat menulis trik dan tips lainya.

Sebelumnya kita perlu tahu dulu, kabel USB extender biasa terdiri dari 4 kabel yaitu :
  • merah : 5 volt dc
  • hijau : data +
  • putih : data -
  • hitam : ground.
Sedangkan kabel UTP / LAN terdiri dari 8 kabel yaitu :
  • orange,
  • putih orange,
  • hijau,
  • putih hijau,
  • biru,
  • putih biru,
  • coklat
  • putih coklat.
Alat dan Bahan Pembuatan Kabel USB Extender 10 Meter :
  1. Kabel USB extender biasa 1 Meter yang sudah kita potong di kedua ujung colokannya. Colokan inilah yang akan kita gunakan.
  2. Kabel UTP Belden KW 1 : 10 Meter maksimal 15 Meter.
  3. Tenol / timah untuk menghubungkan kabel.
  4. Solder, gunting, cutter, dan isolasi.
Berikut konfigurasi kabel USB extender dari kabel UTP :
  • Kabel UTP orange dan putih orange digabung dan dihubungkan dengan kabel merah USB extender.
  • Kabel UTP hijau dihubungkan dengan kabel hijau USB extender.
  • Kabel UTP putih hijau dihubungkan dengan kabel putih USB extender.
  • Kabel UTP sisanya digabung semua dan dihubungkan dengan kabel hitam USB extender. Dengan memperbesar ground, maka kemungkinan loss (kehilangan) arus sangat kecil.
Setelah selesai, rapikan sambungan kabelnya dengan isolasi dan kabel USB extender 10 - 15 Meter siap digunakan


kerusakan pada hardisk dan solusinya

Harddisk merupakan hardware penyimpanan data yang utama pada komputer. Tanpa harddisk, komputer tidak dapat digunakan secera optimal, karena tampilannya hanya tulisan-tulisan berwarna hitam putih.

Harddisk merupakan hardware yang sensitive. Ada beberapa hal yang menyebabkan rusaknya harddisk. Namun yang paling parah ialah matinya aliran listrik secara mendadak, yaitu:

1. Mati lampu. Solusinya ialah dengan memakai adaptor khusus yang dapat menyimpan listrik untuk beberapa menit. Jadi saat mati lampu terjadi, komputer tetap menyala dan masih ada kesempatan untuk mematikan komputer dengan aman.

2. Resset. Sebagai orang berfikir bahwa menekan tombol resset pada CPU adalah hal kecil, padahal ini sangat berbahaya bagi harddisk. Alasannya katika jarum harddisk sedang bekerja, maka posisinya sedang berada di tengah-tengah piringan harddisk. Dan jika kita menekan tombol resset, maka si jarum tersebut akan serentak bergerak ke tepi piringan dan meninggalkan bekas goresan maka terjadilah badsector. Oleh karena itu, jangan asal-asalan menekan tombol resset.
3. Panas. Mungkin hal ini jarang sekali terjadi. tapi jangan pernah sepelekan ini. Panah / temperatur di CPU yang tidak dijaga dapat menyebabkan komponen yang di dalamnya rusak termasuk harddisk.

Sekedar tips seandainya komputer hang dan tidak ada jalan lain selain menekan tombol resset. Tunggulah sampai lampu harddisk (biasanya yang berwarna merah) mati, walau pun nyalanya berkedip-kedip, tekanlah tombol resset saat lampu harddisk sedang mati/tidak menyala.

Jumat, 20 April 2012

Alamat Favorit Buat Download Film, MP3, Software, Game, Nonton TV Dan Banyak Lagi

Ringkasan ini tidak tersedia. Harap klik di sini untuk melihat postingan.

MAKALAH TENTANG GLOBAL WARMING

BAB I

PENDAHULUAN

1.1. Latar Belakang

Latar belakang disusunnya makalah ini adalah untuk memenuhi tugas yang telah diberikan oleh dosen pengajar. Makalh ini membahas tentang Pemanasan global atau global warming. Makalah ini disusun berdasarkan tentang perbincangan yang sedang hangat dibicarakan oleh dunia. Pemanasan global belum menemukan titik terang dalam penanggulangannya. Disini penulis berusaha menerangkan materi yang dibutuhkan sebagai referensi agar dapat menyempurnakan topik yang akan diperbincangkan.

1.2. Tujuan

Tujuan disusunnya makalah untuk menyelesaikan tugas yang telah diberikan juga sebagai prasyarat agar dapat mengikuti Ujian Tengah Semester (UTS). Selain itu penyusunan ini juga untuk membuka jendela pengetahuan tentang permasalahan yang ada saat ini. Harapan penulis adalah agar makalah ini tidak hanya bermanfaat bagi dirinya sendiri, akan tetapi bermanfaat juga bagi meraka yang membutuhkan untuk referensi ataupun bahan bacaan semata

BAB II

PEMBAHASAN

2.1 Pengertian Pemanasan Global

Pemanasan Global adalah meningkatnya suhu rata-rata permukaan bumi akibat peningkatan jumlah emisi Gas Rumah Kaca di atmosfer. Pemanasan Global akan diikuti dengan Perubahan Iklim, seperti meningkatnya curah hujan di beberapa belahan dunia sehingga menimbulkan banjir dan erosi. Sedangkan, di belahan bumi lain akan mengalami musim kering yang berkepanjangan disebabkan kenaikan suhu.

2.2 Hubungan Pemanasan Global dengan Efek Rumah Kaca

Bumi ini sebetulnya secara alami menjadi panas karena radiasi panas matahari yang masuk ke atmosfer. Panas ini sebagian diserap oleh permukaan Bumi lalu dipantulkan kembali ke angkasa. Karena ada gas rumah kaca di atmosfer, di antaranya karbon dioksida (CO2), metana (CH4), nitro oksida (N2O), sebagian panas tetap ada di atmosfer sehingga Bumi menjadi hangat pada suhu yang tepat (60ºF/16ºC) bagi hewan, tanaman, dan manusia untuk bisa bertahan hidup. Mekanisme inilah yang disebut efek gas rumah kaca. Tanpa efek gas rumah kaca, suhu rata-rata di dunia bisa menjadi -18ºC. Sayangnya, karena sekarang ini terlalu banyak gas rumah kaca di atmosfer, terlalu banyak panas yang ditangkapnya. Akibatnya, Bumi menjadi semakin panas.

2.3 Penyebab Pemanasan Global

Pemansan global terjadi ketika ada konsentrasi gas-gas tertentu yang dikenal dengan gas rumah kaca, yg terus bertambah di udara, hal tersebut disebabkan oleh tindakan manusia, kegiatan industri, khususnya CO2 dan chlorofluorocarbon. Yang terutama adalah karbon dioksida, yang umumnya dihasilkan oleh penggunaan batubara, minyak bumi, gas dan penggundulan hutan serta pembakaran hutan.

Asam nitrat dihasilkan oleh kendaraan dan emisi industri, sedangkan emisi metan disebabkan oleh aktivitas industri dan pertanian. Chlorofluorocarbon CFCs merusak lapisan ozon seperti juga gas rumah kaca menyebabkan pemanasan global, tetapi sekarang dihapus dalam Protokol Montreal. Karbon dioksida, chlorofluorocarbon, metan, asam nitrat adalah gas-gas polutif yang terakumulasi di udara dan menyaring banyak panas dari matahari. Sementara lautan dan vegetasi menangkap banyak CO2, kemampuannya untuk menjadi “atap” sekarang berlebihan akibat emisi. Ini berarti bahwa setiap tahun, jumlah akumulatif dari gas rumah kaca yang berada di udara bertambah dan itu berarti mempercepat pemanasan global.

Sepanjang seratus tahun ini konsumsi energi dunia bertambah secara spektakuler. Sekitar 70% energi dipakai oleh negara-negara maju; dan 78% dari energi tersebut berasal dari bahan bakar fosil. Hal ini menyebabkan ketidakseimbangan yang mengakibatkan sejumlah wilayah terkuras habis dan yang lainnya mereguk keuntungan. Sementara itu, jumlah dana untuk pemanfaatan energi yang tak dapat habis (matahari, angin, biogas, air, khususnya hidro mini dan makro), yang dapat mengurangi penggunaan bahan bakar fosil, baik di negara maju maupun miskin tetaplah rendah, dalam perbandingan dengan bantuan keuangan dan investasi yang dialokasikan untuk bahan bakar fosil dan energi nuklir.

Penggundulan hutan yang mengurangi penyerapan karbon oleh pohon, menyebabkan emisi karbon bertambah sebesar 20%, dan mengubah iklim mikro lokal dan siklus hidrologis, sehingga mempengaruhi kesuburan tanah.

2.4 Dampak Pemanasan Global

Pemanasan global mengakibatkan dampak yang luas dan serius bagi lingkungan bio-geofisik (seperti pelelehan es di kutub, kenaikan muka air laut, perluasan gurun pasir, peningkatan hujan dan banjir, perubahan iklim, punahnya flora dan fauna tertentu, migrasi fauna dan hama penyakit, dsb). Sedangkan dampak bagi aktivitas sosial-ekonomi masyarakat meliputi : (a) gangguan terhadap fungsi kawasan pesisir dan kota pantai, (b) gangguan terhadap fungsi prasarana dan sarana seperti jaringan jalan, pelabuhan dan bandara (c) gangguan terhadap permukiman penduduk, (d) pengurangan produktivitas lahan pertanian, (e) peningkatan resiko kanker dan wabah penyakit, dsb). Dalam makalah ini, fokus diberikan pada antisipasi terhadap dua dampak pemanasan global, yakni : kenaikan muka air laut (sea level rise) dan banjir.

Dampak-dampak lainnya :

· Musnahnya berbagai jenis keanekragaman hayati


· Meningkatnya frekuensi dan intensitas hujan badai, angin topan, dan banjir

· Mencairnya es dan glasier di kutub

· Meningkatnya jumlah tanah kering yang potensial menjadi gurun karena kekeringan yang berkepanjangan

· Kenaikan permukaan laut hingga menyebabkan banjir yang luas. Pada tahun 2100 diperkirakan permukaan air laut naik hingga 15 - 95 cm.

· Kenaikan suhu air laut menyebabkan terjadinya pemutihan karang (coral bleaching) dan kerusakan terumbu karang di seluruh dunia

· Meningkatnya frekuensi kebakaran hutan

· Menyebarnya penyakit-penyakit tropis, seperti malaria, ke daerah-daerah baru karena bertambahnya populasi serangga (nyamuk)

· Daerah-daerah tertentu menjadi padat dan sesak karena terjadi arus pengungsian

2.5 Solusi Pemanasan Global

Jadilah Vegetarian

Memproduksi daging sarat CO2 dan metana dan membutuhkan banyak air. Hewan ternak seperti sapi atau kambing merupakan penghasil terbesar metana saat mereka mencerna makanan mereka. Food and Agriculture Organization (FAO) PBB menyebutkan produksi daging menyumbang 18% pemanasan global, lebih besar daripada sumbangan seluruh transportasi di dunia (13,5%). Lebih lanjut, dalam laporan FAO, “Livestock’s Long Shadow”, 2006 dipaparkan bahwa peternakan menyumbang 65% gas nitro oksida dunia (310 kali lebih kuat dari CO2) dan 37% gas metana dunia (72 kali lebih kuat dari CO2). Selain itu, United Nations Environment Programme (UNEP), dalam buku panduan “Kick The Habit”, 2008, menyebutkan bahwa pola makan daging untuk setiap orang per tahunnya menyumbang 6.700 kg CO2, sementara diet vegan per orangnya hanya menyumbang 190 kg CO2! Tidak mengherankan bila ahli iklim terkemuka PBB, yang merupakan Ketua Intergovernmental Panel on Climate Change (IPCC) PBB, Dr. Rajendra Pachauri, menganjurkan orang untuk mengurangi makan daging.

Tanam Pohon

Satu pohon berukuran agak besar dapat menyerap 6 kg CO2 per tahunnya. Dalam seluruh masa hidupnya, satu batang pohon dapat menyerap 1 ton CO2. United Nations Environment Programme (UNEP) melaporkan bahwa pembabatan hutan menyumbang 20% emisi gas rumah kaca. Seperti kita ketahui, pohon menyerap karbon yang ada dalam atmosfer. Bila mereka ditebang atau dibakar, karbon yang pernah mereka serap sebagian besar justru akan dilepaskan kembali ke atmosfer. Maka, pikir seribu kali sebelum menebang pohon di sekitar Anda. Pembabatan hutan juga berkaitan dengan peternakan. Tahukah Anda area hutan hujan seukuran 1 lapangan sepak bola setiap menitnya ditebang untuk lahan merumput ternak? Bila Anda berubah menjadi seorang vegetarian, Anda dapat menyelamatkan 1 ha pohon per tahunnya.

Bepergian yang Ramah Lingkungan

Cobalah untuk berjalan kaki, menggunakan telekonferensi untuk rapat, atau pergi bersama-sama dalam satu mobil. Bila memungkinkan, gunakan kendaraan yang menggunakan bahan bakar alternatif. Setiap 1 liter bahan bakar fosil yang dibakar dalam mesin mobil menyumbang 2,5 kg CO2. Bila jaraknya dekat dan tidak terburu waktu, anda bisa memilih kereta api daripada pesawat. Menurut IPCC, bepergian dengan pesawat menyumbang 3-5% gas rumah kaca.

Kurangi Belanja

Industri menyumbang 20% gas emisi rumah kaca dunia dan kebanyakan berasal dari penggunaan bahan bakar fosil. Jenis industri yang membutuhkan banyak bahan bakar fosil sebagai contohnya besi, baja, bahan-bahan kimia, pupuk, semen, gelas, keramik, dan kertas. Oleh karena itu, jangan cepat membuang barang, lalu membeli yang baru. Setiap proses produksi barang menyumbang CO2.

Beli Makanan Organik

Tanah organik menangkap dan menyimpan CO2 lebih besar dari pertanian konvensional. The Soil Association menambahkan bahwa produksi secara organik dapat mengurangi 26% CO2 yang disumbang oleh pertanian.

Gunakan Lampu Hemat Energi

Bila Anda mengganti 1 lampu di rumah Anda dengan lampu hemat energi, Anda dapat menghemat 400 kg CO2 dan lampu hemat energi 10 kali lebih tahan lama daripada lampu pijar biasa.

Gunakan Kipas Angin

AC yang menggunakan daya 1.000 Watt menyumbang 650 gr CO2 per jamnya. Karena itu, mungkin Anda bisa mencoba menggunakan kipas angin.

Jemur Pakaian Anda di bawah Sinar Matahari

Bila Anda menggunakan alat pengering, Anda mengeluarkan 3 kg CO2. Menjemur pakaian secara alami jauh lebih baik: pakaian Anda lebih awet dan energi yang dipakai tidak menyebabkan polusi udara.

Daur Ulang Sampah Organik

Tempat Pembuangan Sampah (TPA) menyumbang 3% emisi gas rumah kaca melalui metana yang dilepaskan saat proses pembusukan sampah. Dengan membuat pupuk kompos dari sampah organik (misal dari sisa makanan, kertas, daun-daunan) untuk kebun Anda, Anda bisa membantu mengurangi masalah ini!

Pisahkan Sampah Kertas, Plastik, dan Kaleng agar Dapat Didaur Ulang

Mendaur ulang aluminium dapat menghemat 90% energi yang dibutuhkan untuk memproduksi kaleng aluminium yang baru – menghemat 9 kg CO2 per kilogram aluminium! Untuk 1 kg plastik yang didaur ulang, Anda menghemat 1,5 kg CO2, untuk 1 kg kertas yang didaur ulang, Anda menghemat 900 kg CO2.

BAB III

KESIMPULAN DAN SARAN

3.1 KESIMPULAN

Pemanasan global telah menjadi permasalahan yang menjadi sorotan utama umat manusia. Fenomena ini bukan lain diakibatkan oleh perbuatan manusia sendiri dan dampaknya diderita oleh manusia itu juga. Untuk mengatasi pemanasan global diperlukan usaha yang sangat keras karena hampir mustahil untuk diselesaikan saat ini. Pemanasan global memang sulit diatasi, namun kita bisa mengurangi efeknya.Penangguangan hal ini adalah kesadaran kita terhadap kehidupan bumi di masa depan. Apabila kita telah menanamkan kecintaan terhadap bumi ini maka pmanasan global hanyalah sejarah kelam yang pernah menimpa bumi ini.

3.2 SARAN

Kehidupan ini berawal dari kehidupan di bumi jauh sebelum makhluk hidup ada. Maka dari itu untuk menjaga dan melestarikan bumi ini harus beberapa dekade kah kita memikirkannya. Sampai pada satu sisi dimana bumi ini telah tua dan memohon agar kita menjaga serta melstarikannya. Marilah kita bergotong royang untuk menyelematkan bumi yang telah memberikan kita kehidupan yang sempurna ini. Stop global warming.

MAKALAH TENTANG PERKEMBANGAN ANAK PRA SEKOLAH



TAHAP-TAHAP PERKEMBANGAN MANUSIA
TUGAS
PERKEMBANGAN ANAK PRA SEKOLAH









D
I
S
U
S
U
N
OLEH
NAMA   : SEPTY DEWI AZIZAH RITONGA
NIS        : 089
KELAS  : PERAWAT B

GURU PEMBIMBING
DWI APRIANI, S.ST,M.Kes


SEKOLAH MENENGAH KEJURUAN KESEHATAN
BINAMARTA MARTAPURA
OGAN KOMERING ULU TIMUR
TAHUN AJARAN 2011/2012

KATA PENGANTAR
Puji syukur saya ucapkan kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat dan Hidayah Nya, sehingga saya dapat penyelesaikan tugasn ini. Yang mana tugas ini bertopikan tentang Perkembangan Pra Sekolah dan Tahap- Tahap Perkembangannya.
Saya sangat berterima kasih kepada Guru pembimbing saya yang senantiasa memberikan arahan dalam penyusunan tugas ini. Dan saya pula berterima kasih kepada Orang Tua Saya yang selalu tak henti-hentinya memberikan Suport dan Dukungannya. Serta saya pula berterima kasih kepada teman-teman yang telah berpartisipasi dalam memberikan pendapat, kritikan dan saran dalam pembuatan tugas ini.
Saya berharap tugas  ini bermanfaat bagi diri saya sendiri dan pembaca, semoga tugas ini dapat membatu kita memahami tentang Perkembangan pada masa Prasekolah dan tahap-tahapnya. Akhir kata saya ucapkan terima kasih.

                                                                                    Penyusun




















BAB 1
PENDAHULUAN

1.1  LATAR BELAKANG
Perkembangan adalah perubahan psikologis sebagai hasil dari proses pematangan fungsi psikis dan fisik pada diri anak, yang ditunjangi oleh factor lingkungan dan proses belajar dalam peredaran waktu tertentu menuju kedewasaan dari lingkungan yang banyak berpengruh dalam kehidupan anak menuju dewasa. Ada pula ciri-ciri anak prasekolah dan cara mengembangkan agar anak dapat berkembang menjadi kompeten . Dan itu semua akan saya coba bahas dalam makalah ini.

1.2  TUJUAN PEMBUATAN TUGAS
Di dalam pembuatan makalah ini ada beberapa tujuan yang kami jabarkan,
diantaranya adalah :
1. Sebagai salah satu syarat untuk memenuhi tugas Psi & Teknologi Internet
2. Dari hasil diatas, saya ingin mengetahui lebih dalam akan motivasi diri
3. Untuk membantu para mahasiswa dalam mengenal motivasi diri dan mengetahui cara atau tips untuk memotivasi diri.

1.3  METODE PENGUMPULAN DATA
Dalam mengumpulkan data, kami menggunakan metode pengambilan data secara sekunder, yaitu pengambilan data secara tidak langsung melalui informasi yang sudah ada seperti internet dan berbagai macam buku.

















BAB II
PEMBAHASAN


2.1 PENGERTIAN PERKEMBANGAN
      Perkembangan (development) adalah bertambahnya kemampuan (skill) dalam struktur dan fungsi tubuh yang lebih kompleks dalam pola yang teratur dan dapat diramalkan, sebagai hasil dari proses pematangan. Disini menyangkut adanya proses diferensiasi dari sel-sel tubuh, jaringan tubuh, organ-organ dan sistem organ yang berkembang sedemikian rupa sehingga masing-masing dapat memenuhi fungsinya. Termasuk juga perkembangan emosi, intelektual dan tingkah laku sebagai hasil interaksi dengan lingkungannya (Soetjiningsih, 1998).
Periode penting dalam tumbuh kembang anak adalah masa balita. Karena pada masa ini pertumbuhan dasar yang akan mempengaruhi dan menentukan perkembangan anak selanjutnya. Pada masa ini perkembangan kemampuan berbahasa, kreativitas, kesadaran sosial, kesadaran emosional dan inteligensia berjalan sangat cepat. Perkembangan psiko-sosial sangat dipengaruhi lingkungan dan interaksi antara anak dengan orang tuanya. Perkembangan anak akan optimal bila interaksi sosial diusahakan sesuai dengan kebutuhan anak pada berbagai tahap perkembangan.
Perkembangan adalah perubahan psikologis sebagai hasil dari proses pematangan fungsi psikis dan fisik pada diri anak, yang di tunjang oleh faktor lingkungan dan proses belajar dalam peredaran waktu tertentu menuju kedewasaan dari lingkungan yang banyak berpengaruh dalam kehidupan anak menuju dewasa.
Perkembangan menandai maturitas dari organ-organ dan sistem-sistem, perolehan ketrampilan, kemampuan yang lebih siap untuk beradaptasi terhadap stress dan kemampuan untuk memikul tanggung jawab maksimal dan memperoleh kebebasan dalam mengekspresikan kreativitas.

2.2 FAKTOR YANG MEMPENGARUHI PERKEMBANGAN
Menurut Soetjiningsih secara umum terdapat dua faktor yang mempengaruhi tumbuh kembang anak yaitu faktor genetik (instrinsik) dan faktor lingkungan (ekstrinsik). Faktor genetik merupakan modal dasar dalam mencapai hasil akhir proses tumbuh kembang anak. Faktor ini adalah bawaan yang normal dan patologis, jenis kelamin, suku bangsa / bahasa, gangguan pertumbuhan di negara maju lebih sering diakibatkan oleh faktor ini, sedangkan di negara yang sedang berkembang, gangguan pertumbuhan selain di akibatkan oleh faktor genetik juga faktor lingkungan yang kurang memadai untuk tumbuh kembang anak yang optimal.






2.3 FAKTOR PENDUKUNG PERKEMBANGAN
            Faktor – faktor pendukung perkembangan anak menurut Soetjiningsih, (1998),
antara lain:
1) Terpenuhi kebutuhan gizi pada anak tersebut
2) Peran aktif orang tua
3) Lingkungan yang merangsang semua aspek perkembangan anak
4) Peran aktif anak
5) Pendidikan orang tua

2.4 CIRI-CIRI ANAK USIA PRA SEKOLAH
            Menurut Snowman (1993 dalam Patmonodewo, 2003) mengemukakan ciri-ciri anak prasekolah (3-6 tahun) yang biasanya ada TK. Ciri-ciri yang dikemukakan meliputi aspek fisik, sosial, emosi dan kognitif anak.

1.      Ciri fisik anak prasekolah
a.       Anak pra sekolah umumnya aktif
b.      Setelah anak melakukan berbagai kegiatan, anak membutuhkan istirahat yang cukup.
c.       Otot-otot besar pada anak prasekolah lebih berkembang dari control terhadap jari dan tangan. Jadi biasanya anak masih belum terampil malakukan pekerjaan yang rumit, seperti mengikat tali sepatu.
d.      Anak-anak masih sering mengalami kesulitan apabila hrus memfokuskan pandangannya pada objek-objek yang kecil ukurannya, itulah sebabnya koordinasi tangan masih kurang sempurna.
e.       Walaupun tubuh anak lentur, tetapi tengkorak kepala yang melindungi otak masih lunak (soft).
f.       Walaupun anak lelaki lebih besar, anak perempuan lebih terampil dalam tugas yang bersifat praktis, khususnya dalam tugas motorik halus, tetapi sebaiknya jangan mengkritik anak lelaki apabila ia tidak terampil, jauhkan dari sikap membandingkan anak lelaki-perempuan, juga dalam kompetisi ketrampilan seperti apa yang disebut diatas.

2.      Ciri sosial anak prasekolah
a.       Umumnya anak pada tahapan ini memiliki satu atau dua sahabat, tetapi sahabat ini cepat berganti, mereka umumnya dapat cepat menyesuaikan diri secara social
b.      Kelompok bermain cenderung kecil dan tidak terorganisasi secara baik, oleh karena kelompok tersebut cepat berganti-ganti
c.       Anak lebih mudah seringkali bermain bersebelahan dengan anak yang lebih besar



3.      Ciri emosional anak prasekolah
a.       Anak TK cenderung mngekspreseikan emosinya dengan bebas dan terbuka. Sikap marah sering diperlihatkan oleh anak pada usia tersebut.
b.      Iri hati pada anak prasekolah sering terjadi, mereka seringkali memperebutkan perhatian guru.

4.      Ciri kognitif anak prasekolah
a.       Anak prasekolah umumnya terampil dalam berbahasa
b.      Kompetensi anak perlu dikembangkan melalui interaksi, minat, kesempatan, mengagumi dan kasih sayang

Ainsworth dan Wittig (1972) serta Shite dan Wittig (1973) menjelaskan cara mengembangkan agar anak dapat berkembang menjadi kompeten dengan cara sebagai berikut:
a)   Lakukan interaksi sesering mungkin dan bervariasi dengan anak.
b)   Tunjukkan minat terhadap apa yang dilakukan dan dikatakan anak.
c)   Berikan kesempatan kepada anak untuk meneliti dan mendapatkan kesempatan dalam banyak hal.
d)   Berikan kesempatan dan dorongan maka untuk melakukan berbagai kegiatan secara mandiri.
e)   Doronglah anak agar mau mencoba mendapatkan ketrampilan dalam berbagai tingkah laku.
f)    Tentukan batas-batas tingkah laku yang diperbolehkan oleh lingkungannya.
g)   Kagumilah apa yang dilakukan anak.
h)   Sebaiknya apabila berkomunikasi dengan anak, lakukan dengan hangat dan dengan ketulusan hati.
















BAB III
PENUTUP
3.1 KESIMPULAN
Makalah yang telah disusun oleh kami merupakan program yang sangat membantu para mahasiswa dalam pembahasan tentang Perkembangan Anak Usia PraSekolah. Perkembangan adalah perubahan psikologis sebagai hasil dari proses pematangan fungsi psikis dan fisik pada diri anak, yang ditunjangi oleh factor lingkungan dan proses belajar dalam peredaran waktu tertentu menuju kedewasaan dari lingkungan yang banyak berpengruh dalam kehidupan anak menuju dewasa. terdapat dua faktor yang mempengaruhi tumbuh kembang anak yaitu faktor genetik (instrinsik) dan faktor lingkungan (ekstrinsik).

Faktor – faktor pendukung perkembangan anak menurut Soetjiningsih, (1998), antara lain:
1) Terpenuhi kebutuhan gizi pada anak tersebut,
2) Peran aktif orang tua,
3) Lingkungan yang merangsang semua aspek perkembangan anak ,
4) Peran aktif anak,
5) Pendidikan orang tua.

Ada juga cara mengembangkan agar anak dapat berkembang menjadi kompeten dengan cara sebagai berikut:
a)   Lakukan interaksi sesering mungkin dan bervariasi dengan anak.
b)   Tunjukkan minat terhadap apa yang dilakukan dan dikatakan anak.
c)   Berikan kesempatan kepada anak untuk meneliti dan mendapatkan kesempatan dalam banyak hal. Dan banyak lagi cara lainnya.





















DAFTAR PUSTAKA
Hildayani, Rini. 2005. Psikologi Perkembangan Anak. Jakarta: Universitas Terbuka.
Shapiro, Lawrence E. 1997. Mengajarkan Emosional Intelligence. Jakarta : Eramedia.
http://www.anakciremai.com/2009/03/makalah-psikologi-tentang-reaksi-dan.html



























DAFTAR ISI

COVER
KATA PENGANTAR..........................................................................................................      ii
DAFTAR ISI.........................................................................................................................     iii

BAB I PENDAHULUAN.....................................................................................................     1
1.1  LATAR BELAKANG........................................................................................     1     
1.2  TUJUAN PEMBUATAN TUGAS.....................................................................     1
1.3  METODE PENGUMPULAN DATA................................................................     1

BAB II PEMBAHASAN......................................................................................................     2
2.1 PENGERTIAN PERKEMBANGAN ...............................................................     2
2.2 FAKTOR YANG MEMPENGARUHI PERKEMBANGAN..........................     2
2.3 FAKTOR PENDUKUNG PERKEMBANGAN...............................................     3
2.4 CIRI-CIRI ANAK USIA PRA SEKOLAH.......................................................     3
2.      Ciri fisik anak prasekolah ................................................................................     3
3.      Ciri sosial anak prasekolah...............................................................................     3
4.      Ciri emosional anak prasekolah........................................................................     4
5.      Ciri kognitif anak prasekolah............................................................................     4
BAB III PENUTUP..............................................................................................................     5
3.1 KESIMPULAN...................................................................................................     5
DAFTAR PUSTAKA